Herzog–Stamate width conjecture on minimal generators of numerical semigroup defining ideals
Prove that for every numerical semigroup S minimally generated by positive integers s_1 < s_2 < ... < s_g with width wd(S) = s_g − s_1, the minimal number of generators μ(I_S) of the binomial defining ideal I_S of the semigroup ring k[S] satisfies μ(I_S) ≤ (wd(S)+1 choose 2).
References
They showed that $S=\langle e,e+1,e+4,\hdots,2e-1 \rangle$ is a symmetric Sally semigroup and the number of minimal generators $\mu(I\ast_S)$ of $I\ast_S$ satisfies \mu(I*_S)={e-2 \choose 2}\leq {wd(S)+1 \choose 2}. and conjectured that $\displaystyle\mu(I_S)\leq {wd(S)+1 \choose 2}$.
— Numerical Semigroups of Sally Type
(2507.11738 - Dubey et al., 15 Jul 2025) in Section 1, Introduction