Generalize the coordinate-transformation isomorphism Φ to varying G-bundles over the moduli stack
Determine whether the coordinate-transformation isomorphism Φ, defined for a fixed G-bundle P as an isomorphism of twisted D-modules Φ: p_{((z,v),h_z)}^*Δ^{Q}_{oldsymbol{K}(oldsymbol{M})} → H_λ(Δ^{P}_{oldsymbol{K}(oldsymbol{M})})|_{C^{P}_{oldsymbol{K},((z,v),h_z)}, can be extended to allow variation of the underlying G-bundle across the moduli stack Bun_{G,oldsymbol{K}}^X; specifically, construct a generalization of Φ over a substack of Bun_{G,oldsymbol{K}}^X that uniformly realizes the Hecke-modified (N+1)-point coinvariants via coordinate transformations when P varies.
References
Another open question would be if the G-bundles P can be varied, i.e.\ if \Phi could be generalized to a substack of Bun_{G,\underline{K}X.
— Hecke modifications of conformal blocks outside the critical level
(2509.02368 - Abedin et al., 2 Sep 2025) in Subsubsection Outlook, Section 5 (Description via coordinate transformations)