Fractal-dimension equality and min-formula for d-dimensional Fibonacci Hamiltonians
Prove that, for every dimension d ≥ 1 and coupling λ > 0, the Hausdorff dimension and the box-counting dimension of the spectrum of the d-dimensional Fibonacci Hamiltonian H_λ^{(d)} are equal and satisfy dim_H(Sp(H_λ^{(d)})) = dim_B(Sp(H_λ^{(d)})) = min{1, d · dim_B(Sp(H_λ))}.
References
We conjecture that the box-counting and Hausdorff dimensions of the spectrum of the $d$-dimensional Fibonacci Hamiltonian are equal and satisfy \begin{equation} \label{eq:dDimFibConj} \mathrm{dim}{\mathrm{H}(Sp(H\lambda{(d)}))=\mathrm{dim}{\mathrm{B}(Sp(H\lambda{(d)}))=\min\left{1,d\cdot\mathrm{dim}{\mathrm{B}(H{\lambda})\right}. \end{equation}
— Optimal Algorithms for Quantifying Spectral Size with Applications to Quasicrystals
(2407.20353 - Colbrook et al., 29 Jul 2024) in Section 7: Final Remarks (Conjectures), equation (dDimFibConj)