Extremal monomial property of q-characters for all Weyl group elements
Prove that for every Weyl group element w ∈ W and every simple finite-dimensional U_q(ĝ)-module L(m) with highest monomial m, the q-character satisfies X_q(L(m)) ∈ T_w(m) · Z[(A^w_{j,b})^{-1}]_{j∈I,b∈C×}, where T_w is Chari’s braid group action and A^w_{j,b} := T_w(A_{j,b}) are the w-twisted root monomials.
References
Conjecture 4.4. Let L(m) be the simple finite-dimensional Ug(g)-module with the highest monomial m and w E W. Then Xq(L(m)) E Tw (m)Z[(A"})- 1 liEI, beCx . (4.20) Equivalently, Xq(L(m)) = Tw(m) + m' <w Tw (m) E cm' m', Cm' E ZDO .
— Extremal monomial property of q-characters and polynomiality of the X-series
(2504.00260 - Frenkel et al., 31 Mar 2025) in Section 4.3, Conjecture 4.4