Existence of an optimal-coupling Markov kernel for lower semi-continuous transport costs
Determine whether, for a complete separable metric space S, a Markov operator P on S, and a lower semi-continuous semi-distance φ: S×S→[0,∞), there exists a Markov transition kernel Q on S² such that for all x,y∈S, Q((x,y),·)∈Π(δ_x P, δ_y P) attains the Kantorovich cost and satisfies D_φ(δ_x P, δ_y P)=∫ φ(u,v) Q((x,y), d(u,v)).
Sponsor
References
Assuming only that $\phi$ is l.s.c., eq:D_lim implies that the mapping $(x,y)\mapsto D_{\phi}(\delta_{x}P,\delta_{y}P) $ is measurable but it is unclear whether or not there exists a Markov kernel $Q$ such that pced3 holds.
pced3:
— On the Kantorovich contraction of Markov semigroups
(2511.08111 - Moral et al., 11 Nov 2025) in Remark after the proof of Lemma \ref{lemma:ced}, Section 4.1