Equivalence of two functional equations for the shifted-diagonal tetrahedral-index generating function
Prove the equivalence, for all integers r and all nonzero complex z (in the domains of convergence), between the identities for the generating function varphi_r associated to shifted-diagonal tetrahedral-index series: (i) varphi_r(z q^{1/2}, q) · varphi_r(z q^{-1/2}, q) − varphi_{r+1}(z, q) · varphi_{r−1}(z, q) ≡ (z q^{-1/2})^{r} and (ii) varphi_r(z q, q) · varphi_r(z^{-1} q, q) − q^{r} z^{−r} · varphi_{r−2}(z, q) · varphi_{r+2}(z, q) ≡ 1.
References
We suspect equation~eqn:generating_function_noncompact is equivalent to this alternative version \begin{equation}\label{eqn:alternative} \varphi_r(z q,q) \varphi_r(z{-1} q,q) -qr z{-r}\varphi_{r-2}(z,q)\varphi_{r+2}(z,q) \equiv 1 , \end{equation} but we were unable to prove the equivalence between the two generating functions.
eqn:alternative:
eqn:generating_function_noncompact: