Conjectured formulas for upper-degree degeneracies (co-dimension 1 and 2, and extremal degeneracies)
Prove that the explicit degeneracy formulas for (n−1)-simplices and (n−2)-simplices, and for the largest and second-largest d-degrees, hold for all n. Specifically, establish D^{(n-1)}(0,n)=\tfrac{(n−1)(n+2)}{2}, D^{(n-1)}(1,n)=n+1; D^{(n-2)}(0,n)=\tfrac{(n−2)(n−1)n(3n+11)}{24}, D^{(n-2)}(1,n)=\tfrac{n(n^2+n−4)}{2}, D^{(n-2)}(2,n)=\tfrac{(n−1)n}{2}, D^{(n-2)}(3,n)=n; and for general d, D^{(d)}(M^{(d)}(n),n)=d+2 (n≥1) and D^{(d)}(\widetilde M^{(d)}(n),n)=\tfrac{(d+1)(d+2)}{2} (n≥d+2).
References
We guessed #1{Dn1n}--#1{399} from $Q{(d)}(n)$ with $n \leq 8$ obtained with the help of Mathematica, see Qn1
--#1{a20}; we conjecture that #1{Dn1n}--#1{399} hold for all $n$.
— Deterministic simplicial complexes
(Dorogovtsev et al., 10 Jul 2025) in Section 2 (Unconstrained growth), Upper degrees; following Eqs. (Dn1n), (Dn2n), and (399). See also Appendix A: Eqs. (Qn1), (Qn2)–(Qn2-abc).