Conjectural closed formulas for self-dual DT invariants of the point quiver
Prove that for the point quiver (one vertex, no arrows) with the trivial slope function and the two self-dual structures corresponding to types $\mathsf{B}$, $\mathsf{C}$, and $\mathsf{D}$, the self-dual DT invariants satisfy the closed formulas $\mathrm{DT}^{\mathrm{sd}}_{\mathsf{B}_n} = (-1)^n \binom{-1/4}{n}$, $\mathrm{DT}^{\mathrm{sd}}_{\mathsf{C}_n} = (-1)^n \binom{-1/4}{n}$, and $\mathrm{DT}^{\mathrm{sd}}_{\mathsf{D}_n} = (-1)^n \binom{1/4}{n}$ for all integers $n \ge 0$.
References
Based on explicit computation following the algorithm in \cref{para-quiver-algorithm}, we conjecture that $\mathrm{DT}\mathrm{sd}_{\mathsf{B}_n} = \mathrm{DT}\mathrm{sd}_{\mathsf{C}_n} = (-1)n \, \binom{-1/4}{n} , \qquad \mathrm{DT}\mathrm{sd}_{\mathsf{D}_n} = (-1)n \, \binom{\, 1/4 \,}{n} .