Classification of quasiperiodic isodispersive phases
Characterize all quasiperiodic isodispersive phases for reflectionless potentials of the Lax operator L in the classical integrable system defined by the Lax pair (L, M) and evolution equations (iu_t = 2(q^* ξ_x − q ξ^*_x), iv_t = 2(ξ ξ_x^* − ξ^* ξ_x)_x, i ξ_t = −2 v ξ + q_x, i q_t = −2 v q − 2 ξ u_x − 4 ξ_x u + 4 ξ (|ξ|^2)_x − ξ_{xxx}) by determining the conserved densities ρ_n^{R,I} required to classify such phases beyond the uniform-phase invariants ρ_1^I = u − 2|ξ|^2 and (ρ_3^I)_{uniform} = |q|^2 + (u^2 + v^2)/2 + 2 u |ξ|^2 − 2 |ξ|^4.
References
While the uniform phases are classified by values $\rho_1{\text{I}=u-2|\xi|2 $ and $ (\rho_3{\text{I})_{\text{uniform}=|q|2+\frac{u2+v2}{2}+2u|\xi|2-2|\xi|4$, characterizing all quasiperiodic isodispersive phases might require higher-order $\rho_n{\text{R,I}$'s, remaining to be an open problem.