Papers
Topics
Authors
Recent
2000 character limit reached

Fine-Tuning on Noisy Instructions: Effects on Generalization and Performance (2510.03528v1)

Published 3 Oct 2025 in cs.CL

Abstract: Instruction-tuning plays a vital role in enhancing the task-solving abilities of LLMs, improving their usability in generating helpful responses on various tasks. However, previous work has demonstrated that they are sensitive to minor variations in instruction phrasing. In this paper, we explore whether introducing perturbations in instruction-tuning data can enhance LLMs' resistance against noisy instructions. We focus on how instruction-tuning with perturbations, such as removing stop words or shuffling words, affects LLMs' performance on the original and perturbed versions of widely-used benchmarks (MMLU, BBH, GSM8K). We further assess learning dynamics and potential shifts in model behavior. Surprisingly, our results suggest that instruction-tuning on perturbed instructions can, in some cases, improve downstream performance. These findings highlight the importance of including perturbed instructions in instruction-tuning, which can make LLMs more resilient to noisy user inputs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: