Papers
Topics
Authors
Recent
2000 character limit reached

From Score Distributions to Balance: Plug-and-Play Mixture-of-Experts Routing

Published 29 Sep 2025 in cs.LG, cs.AI, and cs.DC | (2510.03293v1)

Abstract: Mixture-of-Experts (MoE) models can scale parameter capacity by routing each token to a subset of experts through a learned gate function. While conditional routing reduces training costs, it shifts the burden on inference memory: expert parameters and activations consume memory, limiting the number of experts per device. As tokens are routed, some experts become overloaded while others are underutilized. Because experts are mapped to GPUs, this imbalance translates directly into degraded system performance in terms of latency, throughput, and cost. We present LASER, a plug-and-play, inference-time routing algorithm that balances load while preserving accuracy. LASER adapts to the shape of the gate's score distribution. When scores provide a clear preference, it routes to the strongest experts; when scores are more uniform, it broadens the set of viable experts and routes to the least-loaded among them. Because LASER relies only on gate scores from a trained model, it integrates directly into existing MoE inference pipelines without retraining or finetuning. We evaluate LASER on Mixtral-8x7B and DeepSeek-MoE-16b-chat across four datasets (ARC-Easy, ARC-Challenge, MMLU, and GSM8K). LASER improves load balancing, translating into lower latency and higher throughput, while keeping the accuracy changes negligible.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.