Papers
Topics
Authors
Recent
2000 character limit reached

The Role of Vocabularies in Learning Sparse Representations for Ranking (2509.16621v1)

Published 20 Sep 2025 in cs.IR and cs.CL

Abstract: Learned Sparse Retrieval (LSR) such as SPLADE has growing interest for effective semantic 1st stage matching while enjoying the efficiency of inverted indices. A recent work on learning SPLADE models with expanded vocabularies (ESPLADE) was proposed to represent queries and documents into a sparse space of custom vocabulary which have different levels of vocabularic granularity. Within this effort, however, there have not been many studies on the role of vocabulary in SPLADE models and their relationship to retrieval efficiency and effectiveness. To study this, we construct BERT models with 100K-sized output vocabularies, one initialized with the ESPLADE pretraining method and one initialized randomly. After finetune on real-world search click logs, we applied logit score-based queries and documents pruning to max size for further balancing efficiency. The experimental result in our evaluation set shows that, when pruning is applied, the two models are effective compared to the 32K-sized normal SPLADE model in the computational budget under the BM25. And the ESPLADE models are more effective than the random vocab model, while having a similar retrieval cost. The result indicates that the size and pretrained weight of output vocabularies play the role of configuring the representational specification for queries, documents, and their interactions in the retrieval engine, beyond their original meaning and purposes in NLP. These findings can provide a new room for improvement for LSR by identifying the importance of representational specification from vocabulary configuration for efficient and effective retrieval.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.