Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An algebraic model for rational torus-equivariant spectra (1101.2511v6)

Published 13 Jan 2011 in math.AT

Abstract: We show that the category of rational G-spectra for a torus G is Quillen equivalent to an explicit small and practical algebraic model, thereby providing a universal de Rham model for rational G-equivariant cohomology theories. The result builds on the first author's Adams spectral sequence, the second author's functors making rational spectra algebraic. There are several steps, some perhaps of wider interest (1) isotropy separation (replacing the category of G-spectra by modules over a diagram of isotropically simple ring G-spectra) (2) passage to fixed points on ring and module categories (replacing diagrams of ring G-spectra by diagrams of ring spectra) (3) replacing diagrams of ring spectra by diagrams of differential graded algebras (4) rigidity (replacing diagrams of DGAs by diagrams of graded rings). Systematic use of cellularization of model categories is central.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. J. P. C. Greenlees (42 papers)
  2. B. Shipley (5 papers)

Summary

We haven't generated a summary for this paper yet.