Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Homotopy theory of modules over diagrams of rings (1309.6997v1)

Published 26 Sep 2013 in math.AT

Abstract: Given a diagram of rings, one may consider the category of modules over them. We are interested in the homotopy theory of categories of this type: given a suitable diagram of model categories M(s) (as s runs through the diagram), we consider the category of diagrams where the object X(s) at s comes from M(s). We develop model structures on such categories of diagrams, and Quillen adjunctions that relate categories based on different diagram shapes. Under certain conditions, cellularizations (or right Bousfield localizations) of these adjunctions induce Quillen equivalences. As an application we show that a cellularization of a category of modules over a diagram of ring spectra (or differential graded rings) is Quillen equivalent to modules over the associated inverse limit of the rings. Another application of the general machinery here is given in work by the authors on algebraic models of rational equivariant spectra. Some of this material originally appeared in the preprint "An algebraic model for rational torus-equivariant stable homotopy theory", arXiv:1101.2511, but has been generalized here.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube