Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

EmoAugNet: A Signal-Augmented Hybrid CNN-LSTM Framework for Speech Emotion Recognition (2508.06321v1)

Published 6 Aug 2025 in cs.SD, cs.HC, and cs.LG

Abstract: Recognizing emotional signals in speech has a significant impact on enhancing the effectiveness of human-computer interaction (HCI). This study introduces EmoAugNet, a hybrid deep learning framework, that incorporates Long Short-Term Memory (LSTM) layers with one-dimensional Convolutional Neural Networks (1D-CNN) to enable reliable Speech Emotion Recognition (SER). The quality and variety of the features that are taken from speech signals have a significant impact on how well SER systems perform. A comprehensive speech data augmentation strategy was used to combine both traditional methods, such as noise addition, pitch shifting, and time stretching, with a novel combination-based augmentation pipeline to enhance generalization and reduce overfitting. Each audio sample was transformed into a high-dimensional feature vector using root mean square energy (RMSE), Mel-frequency Cepstral Coefficient (MFCC), and zero-crossing rate (ZCR). Our model with ReLU activation has a weighted accuracy of 95.78\% and unweighted accuracy of 92.52\% on the IEMOCAP dataset and, with ELU activation, has a weighted accuracy of 96.75\% and unweighted accuracy of 91.28\%. On the RAVDESS dataset, we get a weighted accuracy of 94.53\% and 94.98\% unweighted accuracy for ReLU activation and 93.72\% weighted accuracy and 94.64\% unweighted accuracy for ELU activation. These results highlight EmoAugNet's effectiveness in improving the robustness and performance of SER systems through integated data augmentation and hybrid modeling.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube