Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Foundation Model for Material Fracture Prediction (2507.23077v1)

Published 30 Jul 2025 in cs.LG, cond-mat.mtrl-sci, and physics.geo-ph

Abstract: Accurately predicting when and how materials fail is critical to designing safe, reliable structures, mechanical systems, and engineered components that operate under stress. Yet, fracture behavior remains difficult to model across the diversity of materials, geometries, and loading conditions in real-world applications. While ML methods show promise, most models are trained on narrow datasets, lack robustness, and struggle to generalize. Meanwhile, physics-based simulators offer high-fidelity predictions but are fragmented across specialized methods and require substantial high-performance computing resources to explore the input space. To address these limitations, we present a data-driven foundation model for fracture prediction, a transformer-based architecture that operates across simulators, a wide range of materials (including plastic-bonded explosives, steel, aluminum, shale, and tungsten), and diverse loading conditions. The model supports both structured and unstructured meshes, combining them with LLM embeddings of textual input decks specifying material properties, boundary conditions, and solver settings. This multimodal input design enables flexible adaptation across simulation scenarios without changes to the model architecture. The trained model can be fine-tuned with minimal data on diverse downstream tasks, including time-to-failure estimation, modeling fracture evolution, and adapting to combined finite-discrete element method simulations. It also generalizes to unseen materials such as titanium and concrete, requiring as few as a single sample, dramatically reducing data needs compared to standard ML. Our results show that fracture prediction can be unified under a single model architecture, offering a scalable, extensible alternative to simulator-specific workflows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com