Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Developing a Foundation Model for Predicting Material Failure (2411.08354v1)

Published 13 Nov 2024 in physics.geo-ph

Abstract: Understanding material failure is critical for designing stronger and lighter structures by identifying weaknesses that could be mitigated. Existing full-physics numerical simulation techniques involve trade-offs between speed, accuracy, and the ability to handle complex features like varying boundary conditions, grid types, resolution, and physical models. We present the first foundation model specifically designed for predicting material failure, leveraging large-scale datasets and a high parameter count (up to 3B) to significantly improve the accuracy of failure predictions. In addition, a LLM provides rich context embeddings, enabling our model to make predictions across a diverse range of conditions. Unlike traditional machine learning models, which are often tailored to specific systems or limited to narrow simulation conditions, our foundation model is designed to generalize across different materials and simulators. This flexibility enables the model to handle a range of material properties and conditions, providing accurate predictions without the need for retraining or adjustments for each specific case. Our model is capable of accommodating diverse input formats, such as images and varying simulation conditions, and producing a range of outputs, from simulation results to effective properties. It supports both Cartesian and unstructured grids, with design choices that allow for seamless updates and extensions as new data and requirements emerge. Our results show that increasing the scale of the model leads to significant performance gains (loss scales as $N{-1.6}$, compared to LLMs which often scale as $N{-0.5}$).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube