Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Think, Act, Learn: A Framework for Autonomous Robotic Agents using Closed-Loop Large Language Models (2507.19854v1)

Published 26 Jul 2025 in cs.RO and cs.HC

Abstract: The integration of LLMs into robotics has unlocked unprecedented capabilities in high-level task planning. However, most current systems operate in an open-loop fashion, where LLMs act as one-shot planners, rendering them brittle and unable to adapt to unforeseen circumstances in dynamic physical environments. To overcome this limitation, this paper introduces the "Think, Act, Learn" (T-A-L) framework, a novel architecture that enables an embodied agent to autonomously learn and refine its policies through continuous interaction. Our framework establishes a closed-loop cycle where an LLM first "thinks" by decomposing high-level commands into actionable plans. The robot then "acts" by executing these plans while gathering rich, multimodal sensory feedback. Critically, the "learn" module processes this feedback to facilitate LLM-driven self-reflection, allowing the agent to perform causal analysis on its failures and generate corrective strategies. These insights are stored in an experiential memory to guide future planning cycles. We demonstrate through extensive experiments in both simulation and the real world that our T-A-L agent significantly outperforms baseline methods, including open-loop LLMs, Behavioral Cloning, and traditional Reinforcement Learning. Our framework achieves over a 97% success rate on complex, long-horizon tasks, converges to a stable policy in an average of just 9 trials, and exhibits remarkable generalization to unseen tasks. This work presents a significant step towards developing more robust, adaptive, and truly autonomous robotic agents.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com