Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback (2402.08546v2)

Published 13 Feb 2024 in cs.RO

Abstract: Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed LLMs for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Vineet Bhat (9 papers)
  2. Ali Umut Kaypak (4 papers)
  3. Prashanth Krishnamurthy (68 papers)
  4. Ramesh Karri (92 papers)
  5. Farshad Khorrami (73 papers)
Citations (5)