Papers
Topics
Authors
Recent
2000 character limit reached

Harnessing RLHF for Robust Unanswerability Recognition and Trustworthy Response Generation in LLMs (2507.16951v1)

Published 22 Jul 2025 in cs.CL

Abstract: Conversational Information Retrieval (CIR) systems, while offering intuitive access to information, face a significant challenge: reliably handling unanswerable questions to prevent the generation of misleading or hallucinated content. Traditional approaches often rely on external classifiers, which can introduce inconsistencies with the core generative LLMs. This paper introduces Self-Aware LLM for Unanswerability (SALU), a novel approach that deeply integrates unanswerability detection directly within the LLM's generative process. SALU is trained using a multi-task learning framework for both standard Question Answering (QA) and explicit abstention generation for unanswerable queries. Crucially, it incorporates a confidence-score-guided reinforcement learning with human feedback (RLHF) phase, which explicitly penalizes hallucinated responses and rewards appropriate abstentions, fostering intrinsic self-awareness of knowledge boundaries. Through extensive experiments on our custom-built C-IR_Answerability dataset, SALU consistently outperforms strong baselines, including hybrid LLM-classifier systems, in overall accuracy for correctly answering or abstaining from questions. Human evaluation further confirms SALU's superior reliability, achieving high scores in factuality, appropriate abstention, and, most importantly, a dramatic reduction in hallucination, demonstrating its ability to robustly "know when to say 'I don't know'."

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.