Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DHEvo: Data-Algorithm Based Heuristic Evolution for Generalizable MILP Solving (2507.15615v1)

Published 21 Jul 2025 in cs.NE

Abstract: Primal heuristics play a critical role in improving the efficiency of mixed integer programming (MILP) solvers. As LLMs have demonstrated superior code generation abilities, recent MILP works are devoted to leveraging the evolutionary computation approaches with LLMs to generate effective primal heuristics. Although the generated heuristics have achieved better solving performance than the hand-crafted ones with little adaptability, the advantage of current LLM-based methods is limited to few MILP instances in one problem class, as they fail to capture the instance characteristics in the problem class (the MILP instances generated from the same mathematical model are defined as a problem class). Since MILP instances often differ significantly in structure and feature distribution, the neglect of their characteristics in the evolution process results in poor generalization within the same problem class. To overcome this challenge, we propose a data-algorithm co-evolution framework (DHEvo) that iteratively selects representative instances and evolves corresponding heuristics. With the initial instance distribution, we develop an LLM-based multi-agent system to generate data-code pairs simultaneously. These data-code pairs are iteratively refined based on their fitness scores, leading to the identification of the most effective heuristic over the entire problem class. Extensive experiments across diverse MILP benchmarks demonstrate that our approach significantly outperforms both human-designed heuristics and existing LLM-based methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.