Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Code Retrieval for MILP Instance Generation (2505.11526v1)

Published 11 May 2025 in math.OC and cs.AI

Abstract: Mixed-Integer Linear Programming (MILP) is widely used in fields such as scheduling, logistics, and planning. Enhancing the performance of MILP solvers, particularly learning-based solvers, requires substantial amounts of high-quality data. However, existing methods for MILP instance generation typically necessitate training a separate model for each problem class and are computationally intensive when generating new instances. To address these limitations, we reformulate the MILP Instance Generation task as MILP Code Generation task, enabling efficient, flexible, and interpretable instance generation through code. Since MILP instances generated from code can vary significantly in scale, we introduce MILP-EmbedSim, a new similarity metric that accurately measures the similarity between instances of varying sizes within the same problem class. Leveraging this metric, we propose MILP-Retrieval, a pipeline that retrieves generation code from library to produce MILP instances highly similar to target instance. MILP-Retrieval outperforms baselines in both MILP Code Generation and Instance Generation tasks, provides a novel perspective on MILP instance generation and opens new possibilities for learning-based solvers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube