Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Collab-Solver: Collaborative Solving Policy Learning for Mixed-Integer Linear Programming (2508.03030v1)

Published 5 Aug 2025 in cs.AI

Abstract: Mixed-integer linear programming (MILP) has been a fundamental problem in combinatorial optimization. Previous works have designed a plethora of hard-coded heuristics to accomplish challenging MILP solving with domain knowledge. Driven by the high capability of neural networks, recent research is devoted to replacing manually designed heuristics with learned policies. Although learning-based MILP methods have shown great promise, existing worksindependentlytreatthepolicylearningineachmoduleofMILPsolvers without considering their interdependence, severely hurting the solving speed and quality. To address this issue, we propose a novel multi-agent-based policy learning framework for MILP (Collab-Solver), which can collaboratively optimize the policies for multiple modules. Specifically, we formulate the collaboration of cut selection and branching in MILP solving as a Stackelberg game. Under this formulation, we develop a two-phase learning paradigm to stabilize the collaborative policy learning, where the first phase achieves the data-communicated policy pretraining and the second phase further orchestrates the policy learning for various modules. The jointly learned policy significantly improves the solving performance on both synthetic and large-scale real-world MILP datasets. Moreover, the policies learned by Collab-Solver have also demonstrated excellent generalization abilities across different instance sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube