Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved sampling algorithms and Poincaré inequalities for non-log-concave distributions (2507.11236v1)

Published 15 Jul 2025 in cs.DS, cs.LG, math.PR, and stat.ML

Abstract: We study the problem of sampling from a distribution $\mu$ with density $\propto e{-V}$ for some potential function $V:\mathbb Rd\to \mathbb R$ with query access to $V$ and $\nabla V$. We start with the following standard assumptions: (1) The potential function $V$ is $L$-smooth. (2) The second moment $\mathbf{E}_{X\sim \mu}[|X|2]\leq M$. Recently, He and Zhang (COLT'25) showed that the query complexity of sampling from such distributions is at least $\left(\frac{LM}{d\epsilon}\right){\Omega(d)}$ where $\epsilon$ is the desired accuracy in total variation distance, and the Poincar\'e constant can be arbitrarily large. Meanwhile, another common assumption in the study of diffusion based samplers (see e.g., the work of Chen, Chewi, Li, Li, Salim and Zhang (ICLR'23)) strengthens the smoothness condition (1) to the following: (1*) The potential function of every distribution along the Ornstein-Uhlenbeck process starting from $\mu$ is $L$-smooth. We show that under the assumptions (1*) and (2), the query complexity of sampling from $\mu$ can be $\mathrm{poly}(L,d)\cdot \left(\frac{Ld+M}{\epsilon2}\right){\mathcal{O}(L+1)}$, which is polynomial in $d$ and $\frac{1}{\epsilon}$ when $L=\mathcal{O}(1)$ and $M=\mathrm{poly}(d)$. This improves the algorithm with quasi-polynomial query complexity developed by Huang et al. (COLT'24). Our results imply that the seemly moderate strengthening of the smoothness condition (1) to (1*) can lead to an exponential gap in the query complexity of sampling algorithms. Moreover, we show that together with the assumption (1*) and the stronger moment assumption that $|X|$ is $\lambda$-sub-Gaussian for $X\sim\mu$, the Poincar\'e constant of $\mu$ is at most $\mathcal{O}(\lambda){2(L+1)}$. As an application of our technique, we obtain improved estimate of the Poincar\'e constant for mixture of Gaussians with the same covariance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com