Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp convergence rates for Langevin dynamics in the nonconvex setting (1805.01648v4)

Published 4 May 2018 in stat.ML, cs.LG, math.PR, and stat.CO

Abstract: We study the problem of sampling from a distribution $p*(x) \propto \exp\left(-U(x)\right)$, where the function $U$ is $L$-smooth everywhere and $m$-strongly convex outside a ball of radius $R$, but potentially nonconvex inside this ball. We study both overdamped and underdamped Langevin MCMC and establish upper bounds on the number of steps required to obtain a sample from a distribution that is within $\epsilon$ of $p*$ in $1$-Wasserstein distance. For the first-order method (overdamped Langevin MCMC), the iteration complexity is $\tilde{\mathcal{O}}\left(e{cLR2}d/\epsilon2\right)$, where $d$ is the dimension of the underlying space. For the second-order method (underdamped Langevin MCMC), the iteration complexity is $\tilde{\mathcal{O}}\left(e{cLR2}\sqrt{d}/\epsilon\right)$ for an explicit positive constant $c$. Surprisingly, the iteration complexity for both these algorithms is only polynomial in the dimension $d$ and the target accuracy $\epsilon$. It is exponential, however, in the problem parameter $LR2$, which is a measure of non-log-concavity of the target distribution.

Citations (159)

Summary

We haven't generated a summary for this paper yet.