Metropolis-adjusted Subdifferential Langevin Algorithm (2507.06950v1)
Abstract: The Metropolis-Adjusted Langevin Algorithm (MALA) is a widely used Markov Chain Monte Carlo (MCMC) method for sampling from high-dimensional distributions. However, MALA relies on differentiability assumptions that restrict its applicability. In this paper, we introduce the Metropolis-Adjusted Subdifferential Langevin Algorithm (MASLA), a generalization of MALA that extends its applicability to distributions whose log-densities are locally Lipschitz, generally non-differentiable, and non-convex. We evaluate the performance of MASLA by comparing it with other sampling algorithms in settings where they are applicable. Our results demonstrate the effectiveness of MASLA in handling a broader class of distributions while maintaining computational efficiency.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.