Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning-Based Prediction of Metal-Organic Framework Materials: A Comparative Analysis of Multiple Models (2507.04493v1)

Published 6 Jul 2025 in cs.LG

Abstract: Metal-organic frameworks (MOFs) have emerged as promising materials for various applications due to their unique structural properties and versatile functionalities. This study presents a comprehensive investigation of machine learning approaches for predicting MOF material properties. We employed five different machine learning models: Random Forest, XGBoost, LightGBM, Support Vector Machine, and Neural Network, to analyze and predict MOF characteristics using a dataset from the Kaggle platform. The models were evaluated using multiple performance metrics, including RMSE, R2, MAE, and cross-validation scores. Results demonstrated that the Random Forest model achieved superior performance with an R2 value of 0.891 and RMSE of 0.152, significantly outperforming other models. LightGBM showed remarkable computational efficiency, completing training in 25.7 seconds while maintaining high accuracy. Our comparative analysis revealed that ensemble learning methods generally exhibited better performance than traditional single models in MOF property prediction. This research provides valuable insights into the application of machine learning in materials science and establishes a robust framework for future MOF material design and property prediction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.