Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SHNU Multilingual Conversational Speech Recognition System for INTERSPEECH 2025 MLC-SLM Challenge (2507.03343v1)

Published 4 Jul 2025 in cs.CL and eess.AS

Abstract: This paper describes SHNU multilingual conversational speech recognition system (SHNU-mASR, team name-"maybe"), submitted to Track 1 of the INTERSPEECH 2025 MLC-SLM Challenge. Our system integrates a parallel-speech-encoder architecture with a LLM to form a unified multilingual ASR framework. The parallel-speech-encoder consists of two pre-trained encoders, the Whisper-large-v3 encoder and mHuBERT-147 encoder. Their output embeddings are concatenated and fed into the LLM, enabling the model to leverage complementary acoustic and linguistic knowledge and achieve competitive performance. Moreover, we adopt a tri-stage training strategy to jointly update the low-rank adaptation modules and projector parameters of both the speech encoders and the LLM. In addition, we incorporate an additional language-aware prompt at the LLM input to enhance language-specific text generation. The SHNU-mASR system achieves an overall character/word error rate (CER/WER) of 11.76% on the blind evaluation set of the challenge, outperforming the official MLC-SLM baseline by 8.41 absolute CER/WER, without increasing the baseline training data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube