TalTech Systems for the Interspeech 2025 ML-SUPERB 2.0 Challenge (2506.01458v1)
Abstract: This paper describes the language identification and multilingual speech recognition system developed at Tallinn University of Technology for the Interspeech 2025 ML-SUPERB 2.0 Challenge. A hybrid language identification system is used, consisting of a pretrained language embedding model and a light-weight speech recognition model with a shared encoder across languages and language-specific bigram LLMs. For speech recognition, three models are used, where only a single model is applied for each language, depending on the training data availability and performance on held-out data. The model set consists of a finetuned version of SeamlessM4T, MMS-1B-all with custom language adapters and MMS-zeroshot. The system obtained the top overall score in the challenge.