Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Large Language Models for Automating Clinical Data Standardization: HL7 FHIR Use Case (2507.03067v1)

Published 3 Jul 2025 in cs.CL, cs.AI, and cs.LG

Abstract: For years, semantic interoperability standards have sought to streamline the exchange of clinical data, yet their deployment remains time-consuming, resource-intensive, and technically challenging. To address this, we introduce a semi-automated approach that leverages LLMs specifically GPT-4o and Llama 3.2 405b to convert structured clinical datasets into HL7 FHIR format while assessing accuracy, reliability, and security. Applying our method to the MIMIC-IV database, we combined embedding techniques, clustering algorithms, and semantic retrieval to craft prompts that guide the models in mapping each tabular field to its corresponding FHIR resource. In an initial benchmark, resource identification achieved a perfect F1-score, with GPT-4o outperforming Llama 3.2 thanks to the inclusion of FHIR resource schemas within the prompt. Under real-world conditions, accuracy dipped slightly to 94 %, but refinements to the prompting strategy restored robust mappings. Error analysis revealed occasional hallucinations of non-existent attributes and mismatches in granularity, which more detailed prompts can mitigate. Overall, our study demonstrates the feasibility of context-aware, LLM-driven transformation of clinical data into HL7 FHIR, laying the groundwork for semi-automated interoperability workflows. Future work will focus on fine-tuning models with specialized medical corpora, extending support to additional standards such as HL7 CDA and OMOP, and developing an interactive interface to enable expert validation and iterative refinement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.