Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Physics Augmented Machine Learning Discovery of Composition-Dependent Constitutive Laws for 3D Printed Digital Materials (2507.02991v1)

Published 1 Jul 2025 in cs.LG and physics.comp-ph

Abstract: Multi-material 3D printing, particularly through polymer jetting, enables the fabrication of digital materials by mixing distinct photopolymers at the micron scale within a single build to create a composite with tunable mechanical properties. This work presents an integrated experimental and computational investigation into the composition-dependent mechanical behavior of 3D printed digital materials. We experimentally characterize five formulations, combining soft and rigid UV-cured polymers under uniaxial tension and torsion across three strain and twist rates. The results reveal nonlinear and rate-dependent responses that strongly depend on composition. To model this behavior, we develop a physics-augmented neural network (PANN) that combines a partially input convex neural network (pICNN) for learning the composition-dependent hyperelastic strain energy function with a quasi-linear viscoelastic (QLV) formulation for time-dependent response. The pICNN ensures convexity with respect to strain invariants while allowing non-convex dependence on composition. To enhance interpretability, we apply $L_0$ sparsification. For the time-dependent response, we introduce a multilayer perceptron (MLP) to predict viscoelastic relaxation parameters from composition. The proposed model accurately captures the nonlinear, rate-dependent behavior of 3D printed digital materials in both uniaxial tension and torsion, achieving high predictive accuracy for interpolated material compositions. This approach provides a scalable framework for automated, composition-aware constitutive model discovery for multi-material 3D printing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube