Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse design of anisotropic microstructures using physics-augmented neural networks (2412.13370v1)

Published 17 Dec 2024 in cs.CE

Abstract: Composite materials often exhibit mechanical anisotropy owing to the material properties or geometrical configurations of the microstructure. This makes their inverse design a two-fold problem. First, we must learn the type and orientation of anisotropy and then find the optimal design parameters to achieve the desired mechanical response. In our work, we solve this challenge by first training a forward surrogate model based on the macroscopic stress-strain data obtained via computational homogenization for a given multiscale material. To this end, we use partially Input Convex Neural Networks (pICNNs) to obtain a polyconvex representation of the strain energy in terms of the invariants of the Cauchy-Green deformation tensor. The network architecture and the strain energy function are modified to incorporate, by construction, physics and mechanistic assumptions into the framework. While training the neural network, we find the type of anisotropy, if any, along with the preferred directions. Once the model is trained, we solve the inverse problem using an evolution strategy to obtain the design parameters that give a desired mechanical response. We test the framework against synthetic macroscale and also homogenized data. For cases where polyconvexity might be violated during the homogenization process, we present viable alternate formulations. The trained model is also integrated into a finite element framework to invert design parameters that result in a desired macroscopic response. We show that the invariant-based model is able to solve the inverse problem for a stress-strain dataset with a different preferred direction than the one it was trained on and is able to not only learn the polyconvex potentials of hyperelastic materials but also recover the correct parameters for the inverse design problem.

Summary

We haven't generated a summary for this paper yet.