Papers
Topics
Authors
Recent
Search
2000 character limit reached

HPR-QP: A dual Halpern Peaceman-Rachford method for solving large-scale convex composite quadratic programming

Published 3 Jul 2025 in math.OC | (2507.02470v1)

Abstract: In this paper, we introduce HPR-QP, a dual Halpern Peaceman-Rachford (HPR) method designed for solving large-scale convex composite quadratic programming. One distinctive feature of HPR-QP is that, instead of working with the primal formulations, it builds on the novel restricted Wolfe dual introduced in recent years. It also leverages the symmetric Gauss-Seidel technique to simplify subproblem updates without introducing auxiliary slack variables that typically lead to slow convergence. By restricting updates to the range space of the Hessian of the quadratic objective function, HPR-QP employs proximal operators of smaller spectral norms to speed up the convergence. Shadow sequences are elaborately constructed to deal with the range space constraints. Additionally, HPR-QP incorporates adaptive restart and penalty parameter update strategies, derived from the HPR method's $O(1/k)$ convergence in terms of the Karush-Kuhn-Tucker residual, to further enhance its performance and robustness. Extensive numerical experiments on benchmark data sets using a GPU demonstrate that our Julia implementation of HPR-QP significantly outperforms state-of-the-art solvers in both speed and scalability.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.