Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC (2506.24045v1)
Abstract: The proliferation of agentic LLMs on personal devices introduces a new class of workloads characterized by a dichotomy of objectives. Reactive tasks, initiated by users, demand immediate, low-latency responses, while proactive tasks operate invisibly and prioritize throughput. Existing on-device LLM engines, designed for isolated inferences, fail to efficiently manage these concurrent and conflicting requests on consumer-grade heterogeneous SoCs with CPU, integrated GPU, and NPU. This paper introduces Agent.xpu, an efficient serving system for agentic LLM workloads on memory-unified heterogeneous SoCs. With dedicated offline profiling, Agent.xpu first constructs a heterogeneous execution graph, which fuses and chunks model kernels for affinity-guided, elastic accelerator mapping with predictive kernel annotation. At runtime, its online scheduler enables fine-grained, kernel-level preemption to guarantee the responsiveness of reactive tasks. To maximize SoC utilization, it adopts slack-aware kernel backfill to opportunistically append proactive tasks, and mitigates NPU-iGPU contention via bandwidth-aware dispatch. Evaluation on an Intel Core Ultra SoC shows that Agent.xpu achieves 4.6$\times$ lower latency for reactive tasks and sustains 1.6$\times$-6.8$\times$ higher throughput for proactive tasks compared to state-of-the-art inference engines.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.