Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

$\texttt{SPECS}$: Faster Test-Time Scaling through Speculative Drafts (2506.15733v1)

Published 15 Jun 2025 in cs.AI, cs.CL, and cs.LG

Abstract: Scaling test-time compute has driven the recent advances in the reasoning capabilities of LLMs, typically by allocating additional computation for more thorough exploration. However, increased compute often comes at the expense of higher user-facing latency, directly impacting user experience. Current test-time scaling methods primarily optimize for accuracy based on total compute resources (FLOPS), often overlooking latency constraints. To address this gap, we propose $\texttt{SPECS}$, a latency-aware test-time scaling method inspired by speculative decoding. $\texttt{SPECS}$~uses a smaller, faster model to generate candidate sequences efficiently, and evaluates these candidates using signals from both a larger target model and a dedicated reward model. We introduce new integration strategies, including reward-guided soft verification and a reward-based deferral mechanism. Empirical results on MATH500, AMC23 and OlympiadBench datasets show that $\texttt{SPECS}$~matches or surpasses beam search accuracy while reducing latency by up to $\sim$19.1\%. Our theoretical analysis shows that our algorithm converges to the solution of a KL-regularized reinforcement learning objective with increasing beam width.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube