Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latency and Token-Aware Test-Time Compute (2509.09864v1)

Published 11 Sep 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Inference-time scaling has emerged as a powerful way to improve LLM performance by generating multiple candidate responses and selecting among them. However, existing work on dynamic allocation for test-time compute typically considers only parallel generation methods such as best-of-N, overlooking incremental decoding methods like beam search, and has largely ignored latency, focusing only on token usage. We formulate inference-time scaling as a problem of dynamic compute allocation and method selection, where the system must decide which strategy to apply and how much compute to allocate on a per-query basis. Our framework explicitly incorporates both token cost and wall-clock latency, the latter being critical for user experience and particularly for agentic workflows where models must issue multiple queries efficiently. Experiments on reasoning benchmarks show that our approach consistently outperforms static strategies, achieving favorable accuracy-cost trade-offs while remaining practical for deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.