Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

When Fairness Isn't Statistical: The Limits of Machine Learning in Evaluating Legal Reasoning (2506.03913v1)

Published 4 Jun 2025 in cs.CL and cs.LG

Abstract: Legal decisions are increasingly evaluated for fairness, consistency, and bias using ML techniques. In high-stakes domains like refugee adjudication, such methods are often applied to detect disparities in outcomes. Yet it remains unclear whether statistical methods can meaningfully assess fairness in legal contexts shaped by discretion, normative complexity, and limited ground truth. In this paper, we empirically evaluate three common ML approaches (feature-based analysis, semantic clustering, and predictive modeling) on a large, real-world dataset of 59,000+ Canadian refugee decisions (AsyLex). Our experiments show that these methods produce divergent and sometimes contradictory signals, that predictive modeling often depends on contextual and procedural features rather than legal features, and that semantic clustering fails to capture substantive legal reasoning. We show limitations of statistical fairness evaluation, challenge the assumption that statistical regularity equates to fairness, and argue that current computational approaches fall short of evaluating fairness in legally discretionary domains. We argue that evaluating fairness in law requires methods grounded not only in data, but in legal reasoning and institutional context.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.