Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Engineering the Law-Machine Learning Translation Problem: Developing Legally Aligned Models (2504.16969v1)

Published 23 Apr 2025 in cs.CY and cs.LG

Abstract: Organizations developing machine learning-based (ML) technologies face the complex challenge of achieving high predictive performance while respecting the law. This intersection between ML and the law creates new complexities. As ML model behavior is inferred from training data, legal obligations cannot be operationalized in source code directly. Rather, legal obligations require "indirect" operationalization. However, choosing context-appropriate operationalizations presents two compounding challenges: (1) laws often permit multiple valid operationalizations for a given legal obligation-each with varying degrees of legal adequacy; and, (2) each operationalization creates unpredictable trade-offs among the different legal obligations and with predictive performance. Evaluating these trade-offs requires metrics (or heuristics), which are in turn difficult to validate against legal obligations. Current methodologies fail to fully address these interwoven challenges as they either focus on legal compliance for traditional software or on ML model development without adequately considering legal complexities. In response, we introduce a five-stage interdisciplinary framework that integrates legal and ML-technical analysis during ML model development. This framework facilitates designing ML models in a legally aligned way and identifying high-performing models that are legally justifiable. Legal reasoning guides choices for operationalizations and evaluation metrics, while ML experts ensure technical feasibility, performance optimization and an accurate interpretation of metric values. This framework bridges the gap between more conceptual analysis of law and ML models' need for deterministic specifications. We illustrate its application using a case study in the context of anti-money laundering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube