Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affirmative Algorithms: The Legal Grounds for Fairness as Awareness (2012.14285v1)

Published 18 Dec 2020 in cs.CY and cs.LG

Abstract: While there has been a flurry of research in algorithmic fairness, what is less recognized is that modern antidiscrimination law may prohibit the adoption of such techniques. We make three contributions. First, we discuss how such approaches will likely be deemed "algorithmic affirmative action," posing serious legal risks of violating equal protection, particularly under the higher education jurisprudence. Such cases have increasingly turned toward anticlassification, demanding "individualized consideration" and barring formal, quantitative weights for race regardless of purpose. This case law is hence fundamentally incompatible with fairness in machine learning. Second, we argue that the government-contracting cases offer an alternative grounding for algorithmic fairness, as these cases permit explicit and quantitative race-based remedies based on historical discrimination by the actor. Third, while limited, this doctrinal approach also guides the future of algorithmic fairness, mandating that adjustments be calibrated to the entity's responsibility for historical discrimination causing present-day disparities. The contractor cases provide a legally viable path for algorithmic fairness under current constitutional doctrine but call for more research at the intersection of algorithmic fairness and causal inference to ensure that bias mitigation is tailored to specific causes and mechanisms of bias.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Daniel E. Ho (45 papers)
  2. Alice Xiang (28 papers)
Citations (26)