Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing g-computation estimators: two case studies in selection bias (2506.03347v1)

Published 3 Jun 2025 in stat.ME

Abstract: G-computation is a useful estimation method that can be adapted to address various biases in epidemiology. However, these adaptations may not be obvious for some complex causal structures. This challenge is an example of the much wider issue of translating a causal diagram into a novel estimation strategy. To highlight these challenges, we consider two recent cases from the selection bias literature: treatment-induced selection and co-occurrence of biases that lack a joint adjustment set. For each case study, we show how g-computation can be adapted, described how to implement that adaptation, show some general statistical properties, and illustrate the estimator using simulation. To simplify both the theoretical study and practical application of our estimators, we express the proposed g-computation estimators as stacked estimating equations. These examples illustrate how epidemiologists can translate identification results into an estimation strategy and study the theoretical and finite-sample properties of a novel estimator.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com