Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Together to Perform Better: Teaching Small-Scale LLMs to Collaborate via Preferential Rationale Tuning (2506.02519v1)

Published 3 Jun 2025 in cs.CL

Abstract: LLMssuch as GPT-4 have shown a remarkable ability to solve complex questions by generating step-by-step rationales. Prior works have utilized this capability to improve smaller and cheaper LMs (say, with 7B parameters). However, various practical constraints, such as copyright and legal issues, owing to lack of transparency in the pre-training data of large (often closed) models, prevent their use in commercial settings. Little focus has been given to improving the innate reasoning ability of smaller models without distilling information from larger LLMs. To address this, we propose COLLATE, a trainable framework that tunes a (small) LLM to generate those outputs from a pool of diverse rationales that selectively improves the downstream task. COLLATE enforces multiple instances of the same LLM to exhibit distinct behavior and employs them to generate rationales to obtain diverse outputs. The LLM is then tuned via preference optimization to choose the candidate rationale which maximizes the likelihood of ground-truth answer. COLLATE outperforms several trainable and prompting baselines on 5 datasets across 3 domains: maths problem solving, natural language inference, and commonsense reasoning. We show the eff icacy of COLLATE on LLMs from different model families across varying parameter scales (1B to 8B) and demonstrate the benefit of multiple rationale providers guided by the end task through ablations. Code is released here (https://github.com/Sohanpatnaik106/collate).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube