Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

RAGXplain: From Explainable Evaluation to Actionable Guidance of RAG Pipelines (2505.13538v1)

Published 18 May 2025 in cs.IR and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) systems show promise by coupling LLMs with external knowledge, yet traditional RAG evaluation methods primarily report quantitative scores while offering limited actionable guidance for refining these complex pipelines. In this paper, we introduce RAGXplain, an evaluation framework that quantifies RAG performance and translates these assessments into clear insights that clarify the workings of its complex, multi-stage pipeline and offer actionable recommendations. Using LLM reasoning, RAGXplain converts raw scores into coherent narratives identifying performance gaps and suggesting targeted improvements. By providing transparent explanations for AI decision-making, our framework fosters user trust-a key challenge in AI adoption. Our LLM-based metric assessments show strong alignment with human judgments, and experiments on public question-answering datasets confirm that applying RAGXplain's actionable recommendations measurably improves system performance. RAGXplain thus bridges quantitative evaluation and practical optimization, empowering users to understand, trust, and enhance their AI systems.

Summary

We haven't generated a summary for this paper yet.