Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatic Task Detection and Heterogeneous LLM Speculative Decoding (2505.08600v1)

Published 13 May 2025 in cs.CL

Abstract: Speculative decoding, which combines a draft model with a target model, has emerged as an effective approach to accelerate LLM inference. However, existing methods often face a trade-off between the acceptance rate and decoding speed in downstream tasks due to the limited capacity of the draft model, making it difficult to ensure efficiency across diverse tasks. To address this problem, we propose a speculative decoding algorithm tailored for downstream task optimization. It includes an automatic task partitioning and assigning method, which automatically categorizes downstream tasks into different sub-tasks and assigns them to a set of heterogeneous draft models. Each draft model is aligned with the target model using task-specific data, thereby enhancing the consistency of inference results. In addition, our proposed method incorporates an online lightweight prompt classifier to dynamically route prompts to the appropriate draft model. Experimental results demonstrate that the proposed method improves draft accuracy by 6% to 50% over vanilla speculative decoding, while achieving a speedup of 1.10x to 2.64x in LLM inference.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.