Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation (2505.14015v2)

Published 20 May 2025 in cs.CL

Abstract: The rapid advancement of domain-specific LLMs in fields like law necessitates frameworks that account for nuanced regional legal distinctions, which are critical for ensuring compliance and trustworthiness. Existing legal evaluation benchmarks often lack adaptability and fail to address diverse local contexts, limiting their utility in dynamically evolving regulatory landscapes. To address these gaps, we propose AutoLaw, a novel violation detection framework that combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs. Unlike static approaches, AutoLaw dynamically synthesizes case law to reflect local regulations and employs a pool of LLM-based "jurors" to simulate judicial decision-making. Jurors are ranked and selected based on synthesized legal expertise, enabling a deliberation process that minimizes bias and improves detection accuracy. Evaluations across three benchmarks: Law-SG, Case-SG (legality), and Unfair-TOS (policy), demonstrate AutoLaw's effectiveness: adversarial data generation improves LLM discrimination, while the jury-based voting strategy significantly boosts violation detection rates. Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments, offering a scalable solution for evaluating and enhancing LLMs in legally sensitive applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube