Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

ALMTokenizer: A Low-bitrate and Semantic-rich Audio Codec Tokenizer for Audio Language Modeling (2504.10344v1)

Published 14 Apr 2025 in cs.SD

Abstract: Recent advancements in audio LLMs have underscored the pivotal role of audio tokenization, which converts audio signals into discrete tokens, thereby facilitating the application of LLM architectures to the audio domain. In this study, we introduce ALMTokenizer, a novel low-bitrate and semantically rich audio codec tokenizer for audio LLMs. Prior methods, such as Encodec, typically encode individual audio frames into discrete tokens without considering the use of context information across frames. Unlike these methods, we introduce a novel query-based compression strategy to capture holistic information with a set of learnable query tokens by explicitly modeling the context information across frames. This design not only enables the codec model to capture more semantic information but also encodes the audio signal with fewer token sequences. Additionally, to enhance the semantic information in audio codec models, we introduce the following: (1) A masked autoencoder (MAE) loss, (2) Vector quantization based on semantic priors, and (3) An autoregressive (AR) prediction loss. As a result, ALMTokenizer achieves competitive reconstruction performance relative to state-of-the-art approaches while operating at a lower bitrate. Within the same audio LLM framework, ALMTokenizer outperforms previous tokenizers in audio understanding and generation tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.