Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Discrete Audio Representations for Automated Audio Captioning (2505.14989v1)

Published 21 May 2025 in cs.SD and eess.AS

Abstract: Discrete audio representations, termed audio tokens, are broadly categorized into semantic and acoustic tokens, typically generated through unsupervised tokenization of continuous audio representations. However, their applicability to automated audio captioning (AAC) remains underexplored. This paper systematically investigates the viability of audio token-driven models for AAC through comparative analyses of various tokenization methods. Our findings reveal that audio tokenization leads to performance degradation in AAC models compared to those that directly utilize continuous audio representations. To address this issue, we introduce a supervised audio tokenizer trained with an audio tagging objective. Unlike unsupervised tokenizers, which lack explicit semantic understanding, the proposed tokenizer effectively captures audio event information. Experiments conducted on the Clotho dataset demonstrate that the proposed audio tokens outperform conventional audio tokens in the AAC task.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.