Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STeP: A Framework for Solving Scientific Video Inverse Problems with Spatiotemporal Diffusion Priors (2504.07549v2)

Published 10 Apr 2025 in cs.CV

Abstract: Reconstructing spatially and temporally coherent videos from time-varying measurements is a fundamental challenge in many scientific domains. A major difficulty arises from the sparsity of measurements, which hinders accurate recovery of temporal dynamics. Existing image diffusion-based methods rely on extracting temporal consistency directly from measurements, limiting their effectiveness on scientific tasks with high spatiotemporal uncertainty. We address this difficulty by proposing a plug-and-play framework that incorporates a learned spatiotemporal diffusion prior. Due to its plug-and-play nature, our framework can be flexibly applied to different video inverse problems without the need for task-specific design and temporal heuristics. We further demonstrate that a spatiotemporal diffusion model can be trained efficiently with limited video data. We validate our approach on two challenging scientific video reconstruction tasks: black hole video reconstruction and dynamic MRI. While baseline methods struggle to provide temporally coherent reconstructions, our approach achieves significantly improved recovery of the spatiotemporal structure of the underlying ground truth videos.

Summary

We haven't generated a summary for this paper yet.