Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

A Survey of Pathology Foundation Model: Progress and Future Directions (2504.04045v2)

Published 5 Apr 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Computational pathology, which involves analyzing whole slide images for automated cancer diagnosis, relies on multiple instance learning, where performance depends heavily on the feature extractor and aggregator. Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator, but they lack a systematic analysis framework. In this survey, we present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain: model scope, model pretraining, and model design. Additionally, we systematically categorize PFM evaluation tasks into slide-level, patch-level, multimodal, and biological tasks, providing comprehensive benchmarking criteria. Our analysis identifies critical challenges in both PFM development (pathology-specific methodology, end-to-end pretraining, data-model scalability) and utilization (effective adaptation, model maintenance), paving the way for future directions in this promising field. Resources referenced in this survey are available at https://github.com/BearCleverProud/AwesomeWSI.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com