Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early detection of diabetes through transfer learning-based eye (vision) screening and improvement of machine learning model performance and advanced parameter setting algorithms (2504.03439v1)

Published 4 Apr 2025 in eess.IV, cs.CV, and eess.SP

Abstract: Diabetic Retinopathy (DR) is a serious and common complication of diabetes, caused by prolonged high blood sugar levels that damage the small retinal blood vessels. If left untreated, DR can progress to retinal vein occlusion and stimulate abnormal blood vessel growth, significantly increasing the risk of blindness. Traditional diabetes diagnosis methods often utilize convolutional neural networks (CNNs) to extract visual features from retinal images, followed by classification algorithms such as decision trees and k-nearest neighbors (KNN) for disease detection. However, these approaches face several challenges, including low accuracy and sensitivity, lengthy ML model training due to high data complexity and volume, and the use of limited datasets for testing and evaluation. This study investigates the application of transfer learning (TL) to enhance ML model performance in DR detection. Key improvements include dimensionality reduction, optimized learning rate adjustments, and advanced parameter tuning algorithms, aimed at increasing efficiency and diagnostic accuracy. The proposed model achieved an overall accuracy of 84% on the testing dataset, outperforming prior studies. The highest class-specific accuracy reached 89%, with a maximum sensitivity of 97% and an F1-score of 92%, demonstrating strong performance in identifying DR cases. These findings suggest that TL-based DR screening is a promising approach for early diagnosis, enabling timely interventions to prevent vision loss and improve patient outcomes.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com