Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Model for Diabetic Retinopathy Detection by using Transfer Learning and Ensemble Learning (2308.05178v1)

Published 3 Jun 2023 in eess.IV and cs.CV

Abstract: Diabetic Retinopathy (DR) is an ocular condition caused by a sustained high level of sugar in the blood, which causes the retinal capillaries to block and bleed, causing retinal tissue damage. It usually results in blindness. Early detection can help in lowering the risk of DR and its severity. The robust and accurate prediction and detection of diabetic retinopathy is a challenging task. This paper develops a machine learning model for detecting Diabetic Retinopathy that is entirely accurate. Pre-trained models such as ResNet50, InceptionV3, Xception, DenseNet121, VGG19, NASNetMobile, MobileNetV2, DensNet169, and DenseNet201 with pooling layer, dense layer, and appropriate dropout layer at the bottom of them were carried out in transfer learning (TL) approach. Data augmentation and regularization was performed to reduce overfitting. Transfer Learning model of DenseNet121, Average and weighted ensemble of DenseNet169 and DenseNet201 TL architectures contribute individually the highest accuracy of 100%, the highest precision, recall, F-1 score of 100%, 100%, and 100%, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.